EXpectation Propagation LOgistic REgRession (EXPLORER): Distributed privacy-preserving online model learning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXpectation Propagation LOgistic REgRession (EXPLORER): Distributed privacy-preserving online model learning

We developed an EXpectation Propagation LOgistic REgRession (EXPLORER) model for distributed privacy-preserving online learning. The proposed framework provides a high level guarantee for protecting sensitive information, since the information exchanged between the server and the client is the encrypted posterior distribution of coefficients. Through experimental results, EXPLORER shows the sam...

متن کامل

Privacy-Preserving Logistic Regression

Logistic regression is an important statistical analysis methods widely used in research fields, including health, business and government. On the other hand preserving data privacy is a crucial aspect in every information system. Many privacy-preserving protocols have been proposed for different statistical techniques, with various data distributions, owners and users. In this paper, we propos...

متن کامل

Privacy-preserving logistic regression

This paper addresses the important tradeoff between privacy and learnability, when designing algorithms for learning from private databases. We focus on privacy-preserving logistic regression. First we apply an idea of Dwork et al. [6] to design a privacy-preserving logistic regression algorithm. This involves bounding the sensitivity of regularized logistic regression, and perturbing the learn...

متن کامل

Privacy-Preserving Ridge Regression on Distributed Data

Linear regression is an important statistical tool that models the relationship between some explanatory values and an outcome value using a linear function. In many current applications (e.g. predictive modelling in personalized healthcare), these values represent sensitive data owned by several different parties that are unwilling to share them. In this setting, training a linear regression m...

متن کامل

Privacy Preserving Linear Regression on Distributed Databases

Studies that combine data from multiple sources can tremendously improve the outcome of the statistical analysis. However, combining data from these various sources for analysis poses privacy risks. A number of protocols have been proposed in the literature to address the privacy concerns; however they do not fully deliver on either privacy or complexity. In this paper, we present a (theoretica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Biomedical Informatics

سال: 2013

ISSN: 1532-0464

DOI: 10.1016/j.jbi.2013.03.008